主要内容:
本文通过全微分法、直接求导法、链式求导法等,介绍计算抽象函数z=f(3x+8y,6x-21y)的所有一阶、二阶和三阶偏导数的主要步骤。
一阶偏导数:
△.全微分求法:
对z=f(3x+8y,6x-21y)求全微分有:
dz=f1'(3x+8y)+f2'(6x-21y)
=3f1'dx+8f1'dy+6f2'dx-21f2'dy
=(3f1'+6f2')dx+(8f1'-21f2')dy,则:
z对x的一阶偏导数∂z/∂x=3f1'+6f2',
z对y的一阶偏导数∂z/∂y=8f1'-21f2'。
△.直接求导法:
∂z/∂x=f1'*(3x+8y)'x-f2'(6x-21y)'x=3f1'+6f2';
∂z/∂y=f1'*(3x+8y)'y-f2'(6x-21y)'y=8f1'-21f2'。
二阶偏导数:
∂^2z/∂x^2=3(3f11''+6f12'')+6(3f21''+6f22'')=9f11''+36f12''+36f22'';
∂^2z/∂y^2=8(8f11''-21f12'')-21(8f21''-21f22'')=64f11'-336f12''+441f22'';
∂^2z/∂x∂y=∂^2z/∂y∂x=3(8f11''-21f12'')+6(8f21''-21f22'')=24f11''-(15f12''-126f22''.
三阶偏导数:
∂^3/∂x^3
=9(3f111'''+6f112''')+36(3f121'''+6f122''')+36(3f221'''+6f222''')
=27f111'''+54f112'''+108f121'''+216f122'''+108f221'''+216f222''',
=27f111'''+162f112'''+324f122'''+216f222''';
∂^3z/∂y^3
=64(8f111'''-21f112''')-336(8f121'''-21f122''')+441(8f221'''-21f222''')
=512f111'''-1344f112'''-2688f121'''+2688f122'''+3528f221'''-9261f222''',
=512f111'''-4032f112'''+10584f122'''-9261f222''';
∂^3z/∂x^2∂y
=9(8f111'''-21f112''')+36(8f121'''-21f122''')+36(8f221'''-21f222''')
=72f111'''-189f112'''+288f121'''-756f122'''+288f221'''-756f222''',
=72f111'''+99f112'''-468f122'''-756f222''';
∂^3z/∂y^2∂x
=64(3f111'''+6f112''')-336(3f121'''+6f122''')+441(3f221'''+6f222''')
=192f111'''+384f112'''-1008f121'''-2016f122'''+1323f221'''+2646f222'''
=192f111'''-624f112'''-693f122'''+2646f222'''.