本文通过三角函数的导数公式以及函数乘积、函数和差的求导法则,介绍函数y=(2x+1)sin2x+cos^4(2x+1)的一阶、二阶和三阶导数的计算步骤。
一阶导数计算:
∵y=(4x+1)sin2x+cos^4(2x+1)
∴dy/dx
=4sin2x+2(4x+1)cos2x+4cos^3(2x+1)*[-sin(2x+1)]*2
=4sin2x+2(4x+1)cos2x-8cos^3(2x+1)*sin(2x+1).
二阶导数计算:
dy/dx=4sin2x+2(4x+1)cos2x-8cos^3(2x+1)*sin(2x+1).
再次求导,即可得二阶导数,有:
d^2y/dx^2
=8cos2x+8cos2x-4(4x+1)sin2x+48cos^2(2x+1)sin^2(2x+1)-16cos^3(2x+1)cos(2x+1)
=16cos2x-4(4x+1)sin2x+48cos^2 (2x+1)[1-cos^2(2x+1)]-16cos^4(2x+1)
=16cos2x-4(4x+1)sin2x+48cos^2 (2x+1)-48cos^4(2x+1)]-16cos^4(2x+1)
=16cos2x-4(4x+1)sin2x+48cos^2 (2x+1)-64cos^4(2x+1).
三阶导数计算:
对二阶导数d^2y/dx^2再次对自变量x求导,则:
d^3y/dx^3
=-32sin2x-16sin2x-8(4x+1)cos2x-192cos(2x+1)sin(2x+1)+512cos^3(2x+1)sin(2x+1)
=-48sin2x-8(4x+1)cos2x+8cos(2x+1)sin(2x+1)[64cos^2(2x+1)-24].