本文主要介绍函数y=1/sin(47x+51)的定义域、单调性、凸凹性等性质,并解析函数的单调区间和凸凹区间。
※.函数定义域根据函数特征,函数自变量x在分母,则有sin(47x+51)≠0,此时有:
47x+51≠kπ,k∈Z,即x≠(kπ-51)/47,
所以函数的定义域为:{x|x≠(kπ-51)/47,k∈Z。}
※.函数单调性根据正弦函数的单调性,可知其取倒数的函数y=1/sin(47x+51)单调性。
对于函数y=sin(47x+51)的单调性及单调区间为:
(1)单调增区间
2kπ-π/2≤47x+51≤2kπ+π/2,
2kπ-π/2-51≤47x≤2kπ+π/2-51
(4k-1)π/94-51/47≤x≤(4k+1)π/94-51/47,
(2)单调减区间
2kπ+π/2≤47x+51≤2kπ+3π/2,
2kπ+π/2-51≤47x≤2kπ+3π/2-51
(4k+1)π/94-51/47≤x≤(4k+3)π/94-51/47,
由此可知,函数y=1/sin(47x+51)的单调性如下:
(1)函数的减区间为:(4k-1)π/94-51/47≤x≤(4k+1)π/94-51/47,
(2)函数的增区间为:(4k+1)π/94-51/47≤x≤(4k+3)π/94-51/47。
※.函数的凸凹性用导数知识来解析函数的凸凹性
∵y=1/sin(47x+51),
∴dy/dx=-47cos(47x+51)/sin^2(47x+51),继续求导有:
d^2y/dx^2=-47[-47sin(47x+51)sin^2(47x+51)-47cos(47x+51)*2sin(47x+51)cos(47x+51)]/sin^4(47x+51)],
=47^2[sin(47x+51)sin^2(47x+51)+cos(47x+51)*2sin(47x+51)cos(47x+51)]/sin^4(47x+51)],
=47^2[sin^2(47x+51)+cos(47x+51)*2cos(47x+51)]/sin^3(47x+51)],
=47^2*[1+cos^2(47x+51)]/sin^3(47x+51),
此时函数的凸凹性如下:
(1)当sin(47x+51)>0时,d^2y/dx^2>0,此时函数为凹函数,即:
2kπ<47x+51<2kπ+π,
2kπ-51<47x<2kπ+π-51
2kπ/47-51/47<x<(2k+1)π/47-51/47,
(2)当sin(47x+51)<0时,d^2y/dx^2<0,此时函数为凸函数,即:
2kπ+π<47x+51<2kπ+2π,
2kπ+π-51<47x<2kπ+2π-51
(2k+1)π/47-51/47<x<(2k+2)π/47-51/47。