函数y=sin⁵(15x²+13x+3)的导数计算
主要内容:本文主要用复合函数求导法则、链式求导法则以及取对数求导等方法,介绍计算函数y=sin⁵(15x²+13x+3)一阶和二阶导数的步骤。
※.复合函数链式求导计算一阶导数由复合函数求导法则,对x求导有:
dy/dx=5*sin⁴(15x²+13x+3)*cos(15x²+13x+3)*(15x²+13x+3)’
=5*sin⁴(15x²+13x+3)*cos(15x²+13x+3)*(30x+13),
=5(30x+13)*sin⁴ (15x²+13x+3) *cos(15x²+13x+3).
※.取对数求导计算一阶导数首先对方程两边取对数,有:
lny=lnsin⁵(15x²+13x+3),
lny=5lnsin(15x²+13x+3),
方程两边同时对x求导,有:
y’/y=5 [sin(15x²+13x+3)]’/sin(15x²+13x+3),
y’/y=5 [cos(15x²+13x+3)](30x+13)/sin(15x²+13x+3),
y’=sin⁵(15x²+13x+3)*5[cos(15x²+13x+3)](30x+13)/sin(15x²+13x+3),
y’=sin⁴ (15x²+13x+3)*5[cos(15x²+13x+3)](30x+13),
=5 (30x+13)sin⁴ (15x²+13x+3)*cos(15x²+13x+3).
※.二阶导数计算本处根据函数特征,采取取对数计算导数,
首先对函数两边同时取对数,有:
lny’=ln5(30x+13)sin⁴ (15x²+13x+3)*cos(15x²+13x+3),则:
lny’=ln5+ln(30x+13)+4lnsin(15x²+13x+3)+lncos(15x²+13x+3),
对方程两边同时对x再次求导,
y’’/y’=30/(30x+13)+4[sin(15x²+13x+3)]’/sin(15x²+13x+3)
+[cos(15x²+13x+3)]’/cos(15x²+13x+3),
=30/(30x+13)+4cos(15x²+13x+3)(30x+13)/sin(15x²+13x+3)-
sin(15x²+13x+3)(30x+13)/cos(15x²+13x+3),
=30/(30x+13)+4(30x+13)ctg(15x²+13x+3)-(30x+13)tan(15x²+13x+3),
则:
y’’=5(30x+13)sin⁴ (15x²+13x+3)*cos(15x²+13x+3)[30/(30x+13)+
4(30x+13)ctg(15x²+13x+3)-(30x+13)tan(15x²+13x+3)],
=150sin⁴ (15x²+13x+3)*cos(15x²+13x+3)+20(30x+13)²sin³(15x^2+13x+3)*
cos²(15x²+13x+3)-5(30x+13)²sin⁵(15x²+13x+3),
=75sin³(15x²+13x+3)*sin(30x²+26x+6)+20(30x+13)²sin³(15x²+13x+3)*
cos²(15x²+13x+3)-5(30x+13)²sin⁵(15x²+13x+3)。