先点赞再看,养成好习惯
是极致魅惑、洒脱自由的 Java heap space?是知性柔情、温婉大气的 GC overhead limit exceeded?是纯真无邪、活泼可爱的 Metaspace?如果以上不是你的菜,那还有……刁蛮任性,无迹可寻的 CodeCache!性感火辣、心思细腻的 Direct Memory高贵冷艳,独爱你一人的 OOM Killer!总有一款,能让你钟情!BUG 选择权,现在交由你手!Java heap space这是最常见的一个 OOM 问题了,谁还没经历过一个 Heap OOM呢?
当堆内存被塞满之后,一边 GC 无法及时回收,一边又在继续创建新对象,Allocator 无法分配新的内存之后,就会送一个 OOM 的错误:
java.lang.OutOfMemoryError: Java heap space分析解决起来无非是那几步:
dump 堆内存通过 MAT、YourKit、JProfiler 、IDEA Profiler 等一系列工具分析dump文件找到占用内存最多、最大的对象,看看是哪个小可爱干的分析代码,尝试优化代码、减少对象创建增加 JVM 堆内存、限制请求数、线程数、增加节点数量等常见类库使用误区尤其是一些工具库,尽可能的避免每次新建对象,从而节省内存提升性能。
大多数主流的类库,入口类都保证了单例线程安全,全局维护一份即可
举一些常见的错误使用例子:
Apache HttpClientCloseableHttpClient ,这玩意相当于一个“浏览器进程”了,背后有连接池连接复用,一堆机制的辅助类,如果每次都 new 一个,不仅速度慢,而且浪费了大量资源。
比较正常的做法是,全局维护一个(或者根据业务场景分组,每组一个)实例,服务启动时创建,服务关闭时销毁:
CloseableHttpClient httpClient = HttpClients.custom() .setMaxConnPerRoute(maxConnPerRoute) .setMaxConnTotal(maxConnTotal) /// ... .build();Gson毕竟是 Google 的项目,入口类自然也是实现了线程安全,全局维护一份 Gson 实例即可
JacksonJackson 作为 Spring MVC 默认的 JSON 处理库,功能强大、用户众多,xml/json/yaml/properties/csv 各种主流格式都支持,单例线程安全自然也是 ok 的,全局维护一份 ObjectMapper 即可。
GC overhead limit exceeded这个错误比较有意思,上面的 Java heap space 是内存彻底满了之后,还在持续的创建新对象,此时服务会彻底假死,无法处理新的请求。
而这个错误,只是表示 GC 开销过大,Collector 花了大量的时间回收内存,但释放的堆内存却很小,并不代表服务死了
此时程序处于一种很微妙的状态:堆内存满了(或者达到回收阈值),不停的触发 GC 回收,但大多数对象都是可达的无法回收,同时 Mutator 还在低频率的创建新对象。
出现这个错误,一般都是流量较低的场景,有太多常驻的可达对象无法回收,但是吧,GC 后空闲的内存还可以满足服务的基本使用
不过此时,已经在频繁的老年代GC了,老年代又大对象又多、在现有的回收算法下,GC 效率非常低并切资源占用巨大,甚至会出现把 CPU 打满的情况。
出现这个错误的时候,从监控角度看起来可能是这个样子:
请求量可能并不大不停 GC,并切暂停时间很长时不时的还有新的请求,但响应时间很高CPU 利用率很高毕竟还是堆内存的问题,排查思路和上面的 Java heap space 没什么区别。
Metaspace/PermGenMetaspace 区域里,最主要的就是 Class 的元数据了,ClassLoader 加在的数据,都会存储在这里。
MetaSpace 初始值很小,默认是没有上限的。当利用率超过40%(默认值 MinMetaspaceFreeRatio)会进行扩容,每次扩容一点点,扩容也不会直接 FullGC。
比较推荐的做法,是不给初始值,但限制最大值:
-XX:MaxMetaspaceSize=不过还是得小心,这玩意满了后果很严重,轻则 Full GC,重则 OOM:
java.lang.OutOfMemoryError: Metaspace排查 MetaSpace 的问题,主要思路还是追踪 Class Load数据,比较主流的做法是:
通过 Arthas 之类的工具,查看 ClassLoader、loadClassess 的数据,分析数量较多的 ClassLoader 或者 Class打印每个 的加载日志:-XX:+TraceClassLoading -XX:+TraceClassUnloading下面介绍几个常见的,可能导致 MetaSpace 增长的场景:
反射使用不当JAVA 里的反射,性能是非常低的,以反射的对象必须得缓存起来。尤其是这个Method对象,如果在并发的场景下,每次都获取新的 Method,然后 invoke 的话,用不了多久 MetaSpace 就给你打爆!
简单的说,并发场景下,Method.invoke 会重复的动态创建,从而导致 MetaSpace 区域增长,具体分析可以参考笨神的文章《从一起GC血案谈到反射原理》。
用反射时,尽可能的用成熟的工具类,Spring的、Apache的都可以。它们都内置了reflection相关对象的缓存,功能又全性能又好,足以解决日常的使用需求。
一些 Agent 的 bug一些 Java Agent,静态的和运行时注入的都算。基于 Instrumentation 这套 API 做了各种增强,一会 load 一会 redefine 一会remove的,如果不小心出现 BUG,也很容易生成大量动态的,从而导致 metaspace 打满。
动态代理问题像 Spring 的 AOP ,也是基于动态代理实现的,不管是 CgLib 还是 JDK Proxy,不管是 ASM 还是 ByteBuddy。最终的结果都逃不开动态创建、加载 Class,有这两个操作,那 Metaspace 必定受影响。
Spring 的 Bean 默认是 singleton 的,如果配置为 prototype,那么每次 getBean 就会创建新的代理对象,重新生成动态的、重新 define,MetaSpace 自然越来越大。
Code CacheCode Cache 区域,存储的是 JIT 编译后的热点代码缓存(注意,编译过程中使用的内存不属于 Code cache),也属于 non heap 。
如果 Code cache 满了,你可能会看到这么一条日志:
Server VM warning: CodeCache is full. Compiler has been disabled.此时 JVM 会禁用 JIT 编译,你的服务也会开始变慢。
Code Cache 的上限默认比较低,一般是240MB/128MB,不同平台可能有所区别。
可以通过参数来调整 Code Cache 的上限:
-XX:ReservedCodeCacheSize=只要尽量避免过大的Class、Method ,一般也不太会出现这个区域被打满的问题,默认的 240MB/128MB 也足够了
Direct MemoryDirect Memory 区域,一般称之为直接内存,很多涉及到 磁盘I/O ,Socket I/O 的场景,为了“Zero Copy”提升性能都会使用 Direct Memory。
就比如 Netty ,它真的是把 Direct Memory 玩出了花(有空写一篇 Netty 内存管理分析)……
使用 Direct Memory时,相当于直接绕过 JVM 内存管理,调用 malloc() 函数,体验手动管理内存的乐趣~
不过吧,这玩意使用比较危险,一般都配合 Unsafe 操作,一个不小心地址读写的地址错误,就能得到一个 JVM 给你的惊喜:
## A fatal error has been detected by the Java Runtime Environment:## EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00007ffdbd5d19b4, pid=1208, tid=0x0000000000002ee0## JRE version: Java(TM) SE Runtime Environment (8.0_301-b09) (build 1.8.0_301-b09)# Java VM: Java HotSpot(TM) 64-Bit Server VM (25.301-b09 mixed mode windows-amd64 compressed oops) # Problematic frame:# C [msvcr100.dll+0x119b4]# # No core dump will be written. Minidumps are not enabled by default on client versions of Windows## If you would like to submit a bug report, please visit:# http://bugreport.java.com/bugreport/crash.jsp# The crash happened outside the Java Virtual Machine in native code.# See problematic frame for where to report the bug.#更多的解释,可以参考我这篇《Java中的Heap Buffer与Direct Buffer》
这个 Direct Memory 区域,默认是无上限的,但为了防止被 OS Kill,还是会限制一下,给个256MB或者更小的值,防止内存无限增长:
-XX:MaxDirectMemorySize=如果 Direct Memory 达到 MaxDirectMemorySize 并且无法释放时,就会得到一个 OOM错误:
java.lang.OutOfMemoryError: Direct buffer memoryLinux OOM Killer跳出 JVM 内存管理之后,当 OS 内存耗尽时,Linux 会选择内存占用最多,优先级最低或者最不重要的进程杀死。
一般在容器里,主要的进程就是肯定是我们的 JVM ,一旦内存满,第一个杀的就是它,而且还是 kill -TERM (-9)信号,打你一个猝不及防。
如果 JVM 内存参数配置合理,远低于容器内存限制,还是出现了 OOM Killer 的话,那么恭喜你,大概率是有什么 Native 内存泄漏。
这部分内存,JVM 它还管不了。
除了 JVM 内部的 Native 泄漏 BUG 这种小概率事件外,大概率是你引用的第三方库导致的。
这类问题排查起来非常麻烦,毕竟在 JVM 之外,只能靠一些原生的工具去分析。
而且吧,这种动不动就要 root 权限的工具,可是得领导审批申请权限的……排查成本真的很高
排查 Native 内存的基本的思路是:
pmap 查看内存地址映射,定位可疑内存块、分析内存块数据strace 手动追踪进程系统调用,分析内存分配的系统调用链路更换jemalloc/tcmalloc之类的内存分配器(或者 async-profiler有个支持native 分析的分支)追踪malloc的调用链路目前最常见的 Native 内存泄漏场景,是 JDK 的 Inflater/Deflater 这俩卧龙凤雏,功能是提供 GZIP 的压缩、解压,在默认 glibc 的 malloc 实现下,很容易出现“内存泄漏”。如果出现 Native 内存泄漏,可以先看看应用里有没有 GZIP 相关操作,说不定有惊喜。
好了,各类风格的 OOM 都感受完了,到底哪一个更能打动你呢?