泛化能力提升让自动驾驶车辆更快适应新环境
近日,蘑菇车联提交的轨迹预测论文被IEEE Transactions on Intelligent Vehicles(IEEE TIV) 正式录用。这是蘑菇车联轨迹预测算法今年第二次获得顶级学术期刊IEEE认可。IEEE TIV是全世界第一份智能车专业学术期刊,目前已跻身《期刊引用报告》(Journal Citation Reports, JCR)Q1区,2023年,该期刊位列IEEE所有期刊第六位。与此同时,IEEE TIV 在控制与优化领域121种期刊中排名第3位;在汽车工程领域115种期刊中排名第6。
本次由蘑菇车联与复旦大学类脑人工智能科学与技术研究院共同撰写的论文提出,轨迹预测模型Lane Transformer++可以提高轨迹预测的泛化能力,让自动驾驶车辆更快适应新环境。
为了解决速度差异对轨迹预测模型带来的影响,蘑菇车联基于模型轨迹生成多层感知的速度细化模块,用以减轻速度偏差;针对环境带来的变量,蘑菇车联利用自蒸馏技术进一步提高模型对陌生环境的适应能力。在Argoverse和INTERACTION数据集上的全面评估表明,Lane Transformer++能够显著提高预测性能,特别是在交互数据集上,Lane Transformer++性能最为领先。此外,该模型还可以作为大多数现有轨迹预测模型的插件,提高轨迹预测模型的整体泛化能力。蘑菇车联汇聚了自动驾驶领域顶尖的技术人才,未来将持续在前沿技术领域不断突破,提升技术核心竞争力,助力自动驾驶技术规模化应用。